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Numerical slmulatmns of the n'ucrocanomcal ensemble for Ismg systems are described We 
explain how to write very fast algonthms for such simulations, relate correlations measured m the 
mlcrocanomcal ensemble to those m the canomcal ensemble and discuss criteria for convergence 
and ergodlclty. 

I. Introduction 

Over the last two decades considerable effort has been invested in the develop- 
ment and application of numerical simulation methods [1] to statistical systems. 
Traditionally, in applications dealing with spin or gauge systems, only stochastic 
methods were used. It has been suggested that it is also of interest to investigate 
deterministic evolutions [2, 3]. The purpose of this work is to present a study of 
pseudo-deterministic simulations of Ising systems. Our main aim is to find a method 
which is very fast even on general purpose computers. Our main concern is that, 
unlike the stochastic case [4], we know of no rigorous proof that establishes the 
desired long-time behavior of the process. We approach this question pragmatically, 
concentrating on an exactly soluble system, the 2-d Ising model. For this system we 
are able to check that, within experimental errors, the desired limiting behavior is 
indeed obtained. 

The plan of the paper is as follows: in sect. 2 we describe the simulation algorithm 
and its implementation on the computer. In sect. 3 theoretical expectations are 
presented. The numerical results obtained in the experiment are given in sect. 4. 
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They are shown to agree with theory. The advantages of microcanonical versus 
canonical simulations in general are discussed in sect. 5. 

An appendix has been added in which we compare the evolution of stochastic 
processes which create canonical ensembles to that of deterministic processes which 
are supposed to give rise to microcanonical ensembles. This clarifies why it is very 
hard to rigorously prove that the latter can be used for evaluating statistical 
averages. The rest of our paper shows that, in practice, rmcrocanonical simulations 
can be safely used. 

2. The algorithm and its implementation 

The algorithm is an adaptation of the one presented in ref. [3]. We consider a 
2-dimensional Ising system with energy 

E~= £ ( 1 - s t s j )  , (1) 
(,a) 

where the sum runs over nearest neighbor spins s t on the sites of an L × L lattice. 
Following ref. [3] imagine a demon with a sack of energy Ea. By decree, E d is 
non-negative and bounded from above by E ~  ~'. Given an initial lattice distribution 
of spins with energy E s and a demon with energy E d, one generates a sequence of 
configurations with constant E d + E S = E T. The algorithm that accomplishes this is 

the following: 
The demon hops from site to site trying to flip spins. At each site, A Es, the change 

in E s on flipping the spin, is computed. If A E~ is positive, the demon must supply 
energy to flip the spin. He does so if his sack contains enough energy. Energy 
supplied to the lattice depletes the demon's own energy. If, on the other hand, AE s is 
negative, the spin flip lowers the lattice energy. The energy is accepted by the demon 
(and the spin is flipped) if the demon has space in his bag to hold the extra energy. 
If AE~ is zero, the spin flip is always accepted. This procedure, repeated several times 
over the lattice spins, generates an ensemble of states at fried ET from which 
correlation functions involving the spins can be computed. 

In our experiment we worked on a 64 x 64 square lattice. Since an Ising spin takes 
only two values, we maximally utilize storage by using one computer bit per spin [5]. 
Spin " u p "  corresponds to the bit being zero and spin "down" to it being one. Our 
codes were written on a VAX 11/780 which has a 32-bit word length. We store the 
64 × 64 lattice in 128 words, indexed by an integer I, I = 1 . . . .  ,128. A given row of 
the lattice is coded into two successwe words in the hst of 128 words. For example, 
the words indexed by I = 1 contains in the rightmost bit position the spin corre- 
sponding to the lower right corner of the lattice, in the next bit position, the third 
spin in the bottom row counting from right to left and so on. The important thing is 
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that each word contains spins that do not interact with each other via the action (eq. 
(1)) and so, may be updated simultaneously. 

We use 32 demons, each of which is allowed four energy states labeled 00, 01, 10 
and 11 in binary notation. These are stored in two 32-bit words D1 and D2. The lth 
bit in DI(D2) contains the coefficient of 20(21) in the energy of the tth demon. It is 
easy to see that the minimum non-zero change in a demon's energy corresponds to 
four units of lattice energy. The total energy E T of the system of spins plus the 
demons is then given by 

E r = E s + 4 E  d . (2) 

Given the demon energies D1 and D2 and the products S. $1, S- $2, S. $3, S- $4 
of the spin word S (which is being updated) with its four neighboring spin words Sl, 
$2, S3 and $4, one must construct a boolean function B, which produces the final 
values SN, D1N and D2N for the spin and demon energy words using the algorithm 
described above. On a bit level, B has to reproduce table 1. In this table, the entries 
under "Initial spin state" are the four corresponding bits of the products S-St, 
l = 1, 2, 3, 4 (permutations of these bits yield the same result for SN, D1N, D2N). 
Under "Initial demon energy" are given the two bits of the energy of the demon 
corresponding to the spin being updated. In the table, Y means the spin flip is 
accepted and N that it is not. The numbers beside Y or N in each box denote the 
two bits of the final demon energies. 

In table 2 we show a piece of Fortran code that produces table 1. All vanables are 
of the integer type and XOR, OR, AND and NOT are standard boolean operations. 
The way the code works is as follows: first notice that in the cases where the spin flip 
is accepted in table 1, the final demon energy, DN, is given by DN = 2 + D -  • 
NOT- (S. S1 + S- S2 + S- $3 + S- $4) where D is the initial demon energy. In the 
code, lines 7-10 add 2 to the demon energies and in lines 11-16, .NOT- (S- St) is 
subtracted successively for each i. The cases where the spin-flap is not accepted in 
table 1 are kept track of in the bits of a separate word: "REJECT". The bits of 

TABLE 1 
The boolean function B that gwes new demon energes  and spin fhps from the products S Sl, 

(t = 1, 2, 3, 4), and the lmtlal demon energtes 

Imtlal demon energy 

Imttal spin state 00 01 10 11 

1111 Y 10 Y 11 N 10 N 11 
1110 Y 01 Y 10 Y 11 N 11 
1100 Y 00 Y 01 Y 10 Y 11 
1000 N 00 Y 00 Y 01 Y 10 
0000 N 00 N 01 Y 00 Y 01 

Y and N stand for site spin fhp and no-spin fhp respectively 
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TABLE 2 
Fortran code to produce table 1 

c Input: S,S1,S2,S3,S4,D1,D2 
I(1)= not and (S,S1) 
I(2)= not and (S,$2) 
I(3)= not and (S,$3) 
I(4) = not and (S,$4) 
I R  = 0 

REJECT = 0 
D10 = D1 
D20 = D2 
D3 = D2 
D2 = not. D2 
D O I K = l , 4  
IR = or(IR, and (I(K), .not or (Dl,or (D2,D3)))) 
D1 = xor(Dl,I(K))  
D2 = xor(D2, and (I(K),D1)) 
D3 = and (D3, not. and (D1,D2)) 

1 continue 
REJECT = or (D3, or (IR,REJECT)) 
ACCEPT= not REJECT 
SN = xor(S,ACCEPT) 
D1N = or (and (D10,REJECT), and (D1,ACCEPT)) 
D2N = or (and (D20,REJECT), and (D2,ACCEPT) 

c Output SN,D1N,D2N 

R E J E C T  are zero unless: (a) D N  becomes negative (insufficient energy in the demon 

to flip the spin), or  (b) D N  >/4 (demon gains more energy f rom the flip than he can 

hold). The final spin and demon are constructed using R E J E C T  to decide what 
changes are to be made to the bits of  the initial spin and demons (lines 19-21).  

To  improve thermal contact  between the demons we scrambled their energies after 

each pass through the lattice. This was done by cyclically permuting the bats of  the 

demon  energies randomly.  Because of this, our simulations cannot  be called strictly 

deterministic. 

We should remark that it is not  necessary in principle to have an upper  bound  on 
the demon energy. However,  practically speaking, the demon energy should be 
restricted f rom above as tightly as possible because this results in the fastest 

algorithms. One should ensure of  course that the bound  is not  so severe that it 
prevents the demons f rom flipping spins. 

Using this logic in our program we achieved a speed of  6 x 105 sp in-updates /sec  
on a VAX 11/780.  Using a more sophisticated code a,ld special tricks, Shapiro [8] 

has succeeded in gaining an extra factor of four in speed. This means a rate of  about  
2.5 x 106 spin-updates /sec .  Therefore, on a VAX 11/780,  one obtains a speed only 
a factor  of  10 slower than special purpose machines built for the Ising model  [6]. 
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3. Theoretical predictions 

Ideally, our numerical procedure should generate configurations of the spin 
system (denoted by C) and of the demon system (denoted by c) with equal 
probability and with constant E T. The average over passes of any observable 
O(C, c) should approach the following ensemble average: 

Ec, c es c)+4ed c), E O(C, c) 
~ ( E T )  (3) 

)'~C, c~ Es( C) + 4Ed(C), E z 

Let g(Ed) and G(Es) be the number of states of the demons and the spin system at 
energy E d and Es respectively. Then 

E ¢~Es(C)+4Ed(c),ET "~-" E G ( E s ) g ( e d )  ~Es+4Ed,E T" ( 4 )  
C, c E s, E d 

In the absence of demons, microcanonical averages for the 2-d Islng model are 
defined by 

ECS e~( C), EO ( C ) 
-@(E)- Z O(E) (5) 

The known exact solution for the 2-d Ising model gives analytic expressions for 
canonical averages [7]: 

EeG( E)e-aE-@( E) 
(@)~= EEG(E)e-I~E 

(6) 

We therefore have to relate the averages of eq. (3) (measured) to those of eq. (6) 
(predicted). The average of eq. (5) is an intermediate step: For an observable which 
is independent of the demons we have 

~ ( E T )  F-'Edg(Ed)-O(ET-- 4Ed)G(ET-- 4Ed) (7) 

~.,Edg(Ed)G(ET -- 4Ed) 

When the volume of the Ising system tends to infinity we expect that 

(8) 

where e = E / V  is kept away from its lower and upper bounds. It is important to 
realize that even in the disordered phase (i.e. in the presence of a mass gap) the 
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power corrections in eq. (8) are nonvanishing. For most physical systems, gwen a 
fl > 0, the sums over E in eq. (6) are dominated by a single energy given by 

dS 
fl = de"  (9) 

fl is conjugate to e. Eq. (9) defines implicitly a function e(fl). As V-~ 0¢ we have 

In particular 

(O) v2 O(Ve(B)). (10) 

l<Es)/~ --', e ( f l ) .  (11) 
V---~ o¢ 

The function e(fl) is therefore known from the exact solution. It can be extracted 
from the experiment as follows: We use in eq. (3) a {9 which describes the demon 
energy distribution: 

0 = PE = ~Ed,l~ : ~Es,  E T -- 4 e '  

g( e)F, e G(E T - 4e) 8es+4~,e~ 
(12) 

~'EsEda( EW -- 4Ed)g( Ed) ~es+4e~, eT 

Hence, 

~ , ( E T )  -- NBg(e)e-4BT*-W 2, 
v---~ 0¢ 

(13) 

where Na fixes the normalization and e ( f lT)=  ET/V. y IS given by 8/VC, where 
C = de/dfl (see eq. (11)) and 7 vanishes as V ~  ~ .  (At the phase transition point 
even the product yV vanishes when V ~  ~ . )  To be able to extract e(fl) from the 
measured fi~(ET) one needs g(e). It is easy to see that in our case 

rmn[32, e/2] 

g(e)  = k~=O ( e _ 3 2 2 k ) ( ~ ) .  (14) 

One can also look at various moments of ~ (ET) .  For example 

ff~d=~_,e~(Ew) v~oo32 [ 1 ~_ 2 ] (15) 1 + e 4#T 1 + e 8aT " 

Ignoring the small -/term in eq. (13) one can show that, for an arbitrary g(e) the best 
estimate for fiT is obtained by measuring ff~d and using eq. (15). 

At infinite volume the averages in eqs. (3), (5) and (6) are equal for fl = fiT. 
However, the finite volume corrections are power-like in (3) and (5). It turns out that 
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our accuracy is such that the O(1 /V)  corrections are needed. We therefore need an 
expression for O in powers of 1 / V  where the coefficients are given in terms of (O,), 
the latter being exactly computable. Standard manipulations give, up to order 1 / V  2 

1 020 E=ET</Est 2 - - -  -- <Es>j~ T) >/3T, <O>fl T = ~(<Es>/ST) -4- 2 0 E  2 

~ ( E T )  = ~ ( E s )  • 

(16) 

It is therefore useful to define/3" by 

<Es>fl*(ET) = E s ( E T ) .  (17) 

13" and fiT differ to order 1/V. From eq. (16) we now obtain 

= 2Vd/3[ de~d~3 ]a=aT + 0  ~ . 
(18) 

Eq. (18) can be used only after eq. (17) has been applied in order to obtain/3*(ET). 
It is the dependence of various observables on E s that will be checked against theory 
to order 1/V. The natural control parameter in our ensemble is the nearest neighbor 
spin-spin correlation. 

4. Numerical results 

We did one very long run at a fixed value of E T (E T = 4096). 10000 initial lattice 
sweeps were discarded and 40000 more were kept to compute averages. We 
obtained, 

= 0.50421 + 0.00002, 

~ag = 0.37629 + 0.00008, 

~n~ = 0.30038 + 0.00011. (19) 

Here, ~a~g and ~ are expectation values of the product of two spins along the 
shortest diagonal and on-axis-next-nearest-neighbors respectively. The average 
demon energy gave via eq. (15), 

/3 = 0.381 ± 0.001. (20) 

This value lies in the disordered phase. All the error bars quoted here are truly 
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statistical. They were measured by bunching our data until the correct dependence 
on the bunch size 1/Nb~-b-~h was seen. 

These correlation functions can be computed exactly for the Ising model. First, we 
find (see eq. (17)), 

/3* = 0.380383 ± 0.000009, (20a) 

which agrees with eq.(20). 
The exact results[7]for the other correlations at this temperature are 

(edlag)a. = 0.376460 + 0.000025, 

(end)a .  = 0.300722 ± 0.000025. (21) 

Eqs. (19) and (21) do not agree. It is here that we use the effects of finite volume 
corrections computed before. Using eq. (18), we calculate 

(ea,ag)~* = ~d + 0-00013 + O ( ~ 2  ) ,  

(e.~)~. = ~m + 0.00032 + O( 1 ) (22) 

and the discrepancy is accounted for. 
We also compared the observed demon energy distribution with the prediction of 

eqs. (13-14). This is shown in fig. 1 which is a plot of E d versus log[g(Ed)/P(Ed) ]. 
The slope of this curve yields 4ft. Moreover, the coefficient ~, in eq. (13) may also be 
estimated from this figure. We find y __< 3 × 10 - 4 which justifies neglecting it. 

A different simulation was done next at various values of E T discarding 200 
sweeps and averaging over 1000. Figs. 2 and 3 show ~ and edlag as functions of fl 
(wtuch was computed from the average demon energy). The open circles correspond 
to an initial start of a disordered lattice and the dark points to an initially ordered 
lattice. The solid curve is the exact canonical result. 

While individually, figs. 2 and 3 show rather substantial deviations from the exact 
result, the errors in both curves are highly correlated between the two graphs. This 
suggests that the source of the discrepancy is in the estimate of/3. Indeed, if we plot 
~d~ag versus/3" (see fig. 4), the agreement with the exact result improves dramatically. 
The main observation is that most of the discrepancy between the exact answer and 
the data in figs. 2 and 3 comes from the 1/V corrections in/3. In fig. 4 there are 
present of course the other 1/V effects (see eq. (18)) that we have discussed. 
However, these are too small to be seen on this plot. 

In fig. 5 we plot the quantity (edmg)~xact _ edlag - -  (1 /V  correction). This represents 
the intrinsic statistical error of our microcanonical ensemble. In fig. 6 we plot the 
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Fig 7 ~a,ag versus $ The sohd hne as the exact (canonical) result Thas graph should be compared with 
figs 2, 3 and 4 

corresponding quantity (viz. (ed ,ag)~  x a c t -  (edlag)B) in the canonical ensemble. This 
data was taken by running a metropolis algorithm at the same values of fl as in fig. 2 
w~th hot and cold lattice starts and using the same amount of computer time. A 
comparison of the scales on the ordinates of figs. 5 and 6 shows that the statistical 
error in the microcanomcal runs, for the same amount of computer time is much 
smaller than for the canonical. Therefore, the difference in speed of the two 
programs does reflect itself in the accuracy of the results. 

Finally, in fig. 7, we plot ~dlag versus ~ along with the exact curve in the canonical 
ensemble. The agreement is very good, as expected. 

5. Discussion 

Even so called stochastic processes become deterministic when implemented on a 
computer, because only pseudo-random number generators are used. Therefore, 
strictly speaking, the distinction between our stmulation (even in the absence of the 
random elements of the procedure) and standard Monte Carlo experiments is not as 
fundamental as it might seem. Nevertheless, the two methods are conceptually 
different. The most significant aspect of this difference is the type of control 
parameters one can use. In standard simulations, one can control couplings (gener- 
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alized temperatures). In the microcanonical simulation, one controls directly some of 
the observables (for practical reasons they have to be reasonably local). In our case 
we hold the internal energy fixed. 

This feature of microcanonlcal simulation might be advantageous because physi- 
cal quantities are expected to depend in a smoother way on the internal energy than 
on the temperature. For example, m the 4-dimensional SU(2) lattice gauge theory, 
the violent dependence of the plaquette average on the coupling fl in the crossover 
region seems to be a reflection of a pair of singularities in the complex fl plane. 
When the plaquette variable is used as the independent variable to parametrize other 
observables, the effect of these singularities seems to be neutralized [9]. 

One may also speculate that it would be easier to use microcanonical simulations 
for numerical studies of truncated renormalization group recursion relations. Instead 
of using a set of couplings to obtain matching between "elementary" correlations 
and their "block spin" counterparts, one would directly control the value of at least 
a subset of the elementary correlations. 

Microcanonical simulations are not expected to be slower than stochastic ones. 
For simple systems like the Ising models, where the computation of random 
numbers takes up a significant fraction of computer time, mlcrocanonical simula- 
tions can be made faster by the construction of relatively simple boolean functions. 
Thus, ordinary sequential machines can be used in an effectively multiprocessing 
mode. For this, as we 'have seen, one uses multiple spin packing in a computer word, 
with simultaneous updating of spins in the word. 

One disadvantage of microcanonical simulation is the absence of a mathematical 
proof for ergodic or mixing behavior. A more detailed discussion of this is given in 
the appendix. However, a small amount of randomness can always be introduced at 
no significant cost m speed. In our case, we used a random shift of the demons for 
this purpose. This probably neutralizes any undesirable consequences of possible 
violations of ergodicity. In our simulations, we have checked for "bad"  initial states 
where the system gets trapped into subsets of the constant energy surface. We found 
that this only happens for very special configurations. Our high accuracy run 
indicates that one is probably quite safe from such states as long as some inde- 
terminancy is present in the system. Therefore, for Ising systems, our method is a 
faster way to obtain numerical results. 

The algorithm we use is easily generalizable to higher dimensions. On a 3-dimen- 
sional lattice of size 120 x 128 x 128, we have programs which run at the rate of 24.0 
million spin-updates/sec on a CDC-7600. 

Discussions with H. Hamber, O. Martin, J. Shapiro and S. Wolfram are gratefully 
acknowledged. The work of G.B. and H.N. was supported by the DOE under grant 
no. DE-AC02-76ER02220 and that of M.C. was supported by the DOE under grant 
no. DE-AC02-76DH00016. 
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Appendix 

In this appendix, we compare the convergence criteria for stochastic and determin- 
istic processes. We will first review the basic features of stochastic methods usually 
employed in numerical simulation and then compare them with deterministic ones. 
Since we deal with Ising systems in a finite volume, we have a finite space of states. 
This allows the use of discrete notation. Most of what we have to say generalizes to 
infinite spaces. 

In a standard Monte Carlo study, one simulates a Markov process on the space of 
states {C}. The process is defined by the transition probablhties p ( C  1 ~ C2). These 
p (  C 1 ~ C 2 ) build a stochastic matrix P. 

(A.1) 

It 1s then required that, for a given function on (C} (e.g. the action E ( C ) )  and a 
non-negative initial vector Q (with components Q(C)),  we should have 

lim P"Q = N e  E(c). (A.2) 
n---~ O0 

For a given Q, the limit in eq. (A.2) exists iff the matrix P has no eigenvalues 
exp(iqo) with rp 4= 2rrn [4]. The limit will be Q independent iff the unit element is a 
non-degenerate eigenvalue of P. The fact that F.,cp(C ~ ---, C) = 1 ensures that unity is 
an eigenvalue. Frobenlus' theorem [10] ensures that all other eigenvalues # of P 

satisfy I~1 ~< 1. 
Given E(C) ,  the problem is to find p(C~ ---, C2) such that P satisfies the require- 

ments of the existence and uniqueness of the limit as given m eq. (A.2). 
A possible solution is obtained by requiring detailed balance. 

eE(Cl)p ( C 1 ~ 6"2) = e e(C2)p ( C2 __, C1 ).  (A.3) 

For the particular choice Q(C)  = e E(c), one has 

( P Q ) ( c )  = E p (c1 ~ c )  e E(cl) 
cl 

= 2 p ( C  ~ C1) e E(C) = Q ( C ) .  (A.4)  
cl 

The only additional requirements 
modulus unity except the unit 
nondegenerate. 

Defme, 

are: (i) that there be no complex eigenvalue with 
dement  and (li) that the eigenvalue unity be 

x (  c , ,  c2) = p (  C, c2) e - (A.5) 
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Clearly, X(C1, C2)= X(C2, CI). Therefore, P is similar to a symmetric matrix and 
has only real eigenvalues. The eigenvalue - 1  is still possible and, by Frobenius' 
theorem [10], will occur iff a relabeling of states brings P into the form, 

0 P1 ) (A.6) 
P =  /'2 0 ' 

where, dim P1 = dim P2 because of the symmetry of S. To avoid this, we must pick 
p ( C  1 --, C)  in eq. (A.3) such that the space of states cannot be broken into two 
disjoint parts with the only possible transitions being those which take a state from 
one part to the other. 

The other requirement p ( C  1 ~ C2) has to satisfy is that the eigenvalue unity be 
simple. This is ensured by making P non-decomposable; i.e. no relabeling of states 
can bring P to the form, 

P3)" (A.7) 

This means that there does not exist a splitting of the space of states into two 
disjoint, non-empty sets with transitions from one particular set into the other 
disallowed. 

An obvious way to meet the above requirements is to have no forbidden 
transitions. This is the situation in the "heat  bath" simulations [1]. In the metropolis 
simulation, where an updating table is used, it must be ensured that an arbitrary 
state Cr can be reached in a finite number of steps from any initial state C1. 

In summary, once detailed balance is satisfied, one has only to avoid two 
undesirable possibilities: (1) that there exists an initial state from which the evolu- 
tion does not cover the entire space of states and (2) that there are undamped 
oscillations between two subsets of states*. 

Instead of a transition probability p ( C  1 ~ C2) , the deterministic methods use a 
fixed mapping q0. One looks then for density functions defined over the space of 
states that are invariant under this mapping. Such a density function defines an 
ensemble. This is the analogue of the limiting distribution e E(c) in the previous 
discussion. The most familiar case is when the space of states is the phase space of a 
closed physical system and the mapping ~ is the one-parameter group of diffeomor- 
phisms representing hamiltonian flow. 

The two features one would like qo to have are that it be measure preserving 
(Liouville's theorem) and that it conserves the energy. The invariant density then is 
the microcanonical ensemble. When the number of degrees of freedom are large, 

* For a generahzalaon to gauge theories, where the space is continuous but compact, see the appendix 
of ref [11] 
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microcanonical averages can be expanded in powers of the inverse volume with 
expansion coefficients given in terms of the canonical averages. The main concern of 
ergodic theory is to what extent the microcanonical ensemble represents average 
properties of the long time behavior of arbitrary motions of the system [12]. 

In ergodic theory, one deals with a space of states M over which some density/ ,  
and a volume preserving mapping ¢p is defined. 

Let f be a function on M (an observable). The time average of f is 

n - 1  

f*(x) = hm 1 y:  f(cpm(x)), (A.8) 
n--* oo n 

m = O  

while its ensemble average is, 

(f> =fd~(x)f(x). (A.9) 

The simplest question is: does f*(x) exist and to what extent is it related to some 
ensemble average? One can show [12] that if ¢p is measure preserving, f*(x) exists, 

it is invariant, ( f * ( ~ o ( x ) ) = f * ( x ) )  and 

( f * >  = ( f > .  (A.10) 

More precisely, f*(x) exists for any x except perhaps a subset of M of measure 

zero. 
The first problem of ergodic theory is the dependence of f *  on the initial 

condition x. A system is ergodic if f * ( x )  is independent of x. A system is ergodic iff 
every invariant subset of M is either of zero volume or else its volume equals that of 
M. Therefore, in the presence of conservation laws, one has to restrict M to the 
subspace where the conserved quannties are given prescnbed values. In hamlltonian 
systems, this always means at least a restriction to surfaces of constant energy. 

Thus, ergodicity allows one to use time averages to evaluate ensemble averages. 
This is not really sufficient to make the simulation practical. The reqmrement of the 
stochastic process (eq. (A.2)) was much stronger. It required a long rime limit which 
is independent of inihal conditions. We would be satisfied with a condinon which is 
a little weaker; viz. an analogue of eq. (A.2) but with expectanon values: 

fi+mfdu(x)f(w"(x))g(x)= ( f><g> .  (A.11) 

One can think of g as defining some initial distribution (analogue to Q in eq. (A.2)), 
properly normalized ( (g )  = 1) and of f as being our observable. 

The above property is called mixing and implies ergo&city. Eq. (A.2) was true iff 
the matrix P of transition probabilities sansfled certain spectral propernes. We shall 
see later that an analogous spectral reqmrement arises here also. The main dxfference 
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will be that whereas in the previous case, it was very easy to choose P to satisfy the 
spectral conditions, this is very hard to do in our case. There are very few examples 
of dynamical systems which have been proved to be mixing. This is the source of our 

concern. 
The space H of all complex-valued functions on M is a Hilbert space with inner 

product given by, 

( f , g ) = f d ~ ( x ) f * ( x ) g ( x ) .  (A.12) 

q0 induces a unitary operator U on H: 

(vf)(x) (A.13) 

Our system is ergodic iff unity is a simple eigenvalue of U. For P we knew that all 
elgenvalues are inside the unit circle. For U we know that they are on it. If the 
system is ergodic and mixing, the single discrete eigenvalue is unity. It is then true 

that for any f and g, 

lim (Unf ,  g) = ( f ,  1)(1, g) (A.14) 
n ---~ O0 

and this is equivalent to mixing. 
Thus, in analogy with the previous case, we have to get rid of the oscillations 

induced by eigenvalues that are pure phases. For a system with a finite number of 
states this is rigorously impossible because the reversibility of q0 implies Poincar6 
recurrences. It is only when the volume of the system tends to infinity that mixing 
might hold exactly. 

A sufficient condition [12] for mixing is that as V ~  oo, there exist a basis 

( fd }~ ~ I, y ~ Z o f  H such that, 

Ufd = f d  +l . (A.15) 

In practice, periodic recurrences can be avoided by introducing a small amount of 
randomness in an otherwise deterministic process. For example, one can sample the 
sites of the lattice randomly instead of in a well defined sequence. 

Let (C} = S be the set of states of our Ising system. We also need an auxiliary 
space of states (D} = d. We consider henceforth M = S × d. On M we define the 
measure /~ which assigns equal weight to every configuraUon. We need now a 
mapping ~p: M --, M which preserves this measure. This means that ~ must have an 
inverse. For practical purposes we want cp to be both simple and implementable by 
parallel processing. Therefore we want cp to be local. We look for a ¢p winch is 
expressible in terms of "elementary" mappings acting on individual sites. Such an 
elementary mapping acts on one site of the Ising system and on the set d. We require 
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that the mapping preserve one quantity: the "energy" Ea-, which is an observable on 
M. We also require E T to be additive. The space d is the space of states of the 
"demons." One can easily generahze this to xnclude any number of conserved 
quantities (one would always require additivity). The space d must be manageable; 
i.e. canonical or microcanonical averages on it can be computed analytically. 

The demons serve two purposes: the first is that they make ergodic behavior more 
lnkely. Indeed, because of the simplicity of ~, surfaces of constant E s might split into 
regions disjoint under qo (trapping because of impenetrable barriers). The existence 
of the demons allows limited violations of the conservation of E s which helps to 
overcome "small" barriers. The second purpose that is served by the demons is that 
they allow the "measurement" of variables conjugate (in the thermodynamic sense) 
to the conserved quantities. This is because, for small demon systems, the Ising 
system acts as a macroscopic reservoir. Even when the space d is large, one can still 
make it manageable (see ref. [2]) but there the addition of more conserved quantities 
(conjugate to more couplings) becomes a problem. 

This discussion explains why it is difficult to rigorously establish ergodicity or 
mixing in deterministic microcanonical simulations. However, the injection of small 
amounts of randomness into the process probably makes it convergent in a sense 
which is likely to be even stronger than mixing. We consider the present paper as 
experimental proof of this claim. 
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